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Abstract—Increased connectivity in modern aircraft also sig-
nificantly increases the attack surface available to adversaries and
the number of possible attack paths. It is therefore of essence
to characterise the attacks that can impact safety. We present
Cassandra , a novel methodology combining System Theoretic
Process Analysis Security (STPA-Sec) with formal verification
to automatically identify safety critical threat scenarios. Unlike
previous methodologies for safety and security analysis, Cassan-
dra leverages the integration with the aircraft architecture,
together with the set of threats and the privileges required
to execute them, to also identify safety critical attack paths.
We employ Bayesian inference to compute the probability of
success for the safety critical attacks found. We describe how
Cassandra can be used in the system early design phase to reason
about attack paths leading to safety critical threat scenarios and
discuss how it can be further used to evaluate mitigation and
assurance cases by reducing threat vectors and increasing safety.
In particular, we apply Cassandra to analyse the safe operation
of a Flight Management System (FMS) when the adversary
tries to access safety critical information by compromising the
device used as the Electronic Flight Bag (EFB). We evaluate
the probability of successful attacks in three different scenarios:
EFB available on pilot owned device, EFB available on airline
controlled device with limited connectivity, and EFB available on
aircraft only. While the outcome of Cassandra may be intuitive in
this case, the example allows us to show how Cassandra improves
automation and integration of safety and security analysis for
modern avionic architectures, where complexity hinders intuition
and manual analysis is laborious and error prone.

Index Terms—safety, security, attack graphs, verification,
STPA-Sec.

I. INTRODUCTION

With the increase of connectivity in modern aircraft, the
attack surface available to adversaries also grows. Complex
attacks combine the exploitation of vulnerabilities with the
malicious use of legitimate functionality to induce cascading
effects and alter system behaviour. In safety critical systems
without appropriate safeguards, such attacks can lead to the
violation of safety requirements.
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The Flight Management System (FMS) is of utmost im-
portance among the various systems integrated into modern
aircraft, primarily due to its pivotal role in significantly reduce
the crew workload associated with flight planning, navigation,
and guidance. With the rapid advances in technology, FMS has
become an indispensable component of both commercial and
general aviation aircraft, significantly improving operational
efficiency and flight safety [1]. Its functionality relies on seam-
less integration with numerous other systems and components
within the aircraft, thereby increasing the complexity involved
in conducting a comprehensive analysis of all potential paths
that could lead to safety or security violations. Performing
a thorough analysis of aircraft systems such as the FMS
during the development phase of the aircraft facilitates the
identification of potential architectural improvements and the
implementation of necessary mitigations to maintain required
levels of safety and security and thus development cost. To
enable such early-stage analyses, top-down techniques such
as System Theoretic Process Analysis (STPA) need to be
employed [2]. In fact, STPA offers the advantage of per-
forming analysis at a functional level, thus eliminating the
need of specifications for individual components or item-level
definitions of the aircraft. It further enables identify the causal
factors leading to hazards by examining the interactions be-
tween system components [3], [4]. By considering functional
interaction, STPA enables the identification of potential risks
and the formulation of recommendations at an earlier stage in
the design process. In contrast, traditional methodologies (e.g.,
fault/attack-trees) for safety and security analysis require well-
defined architectures, with the item-level specifications, mak-
ing it more difficult to identify desirable architectural changes
and recommendations. Furthermore, these methodologies are
generally performed manually and require a significant amount
of effort and highly specific knowledge across several teams
of experts in systems, safety and security. Consequently, the
results obtained by these analyses are highly subjective and
lack reproducibility. Moreover, the methods employed lack a
clear link to one another, thus limiting traceability between
different analyses.
In this paper, we present Cassandra, a novel methodology
that combines System Theoretic Process Analysis for security
(STPA-Sec) with formal verification to automatically identify
the safety critical threat scenarios. Unlike earlier methodolo-



gies, Cassandra leverages a correspondence between high-
level threats and aircraft architecture to identify safety critical
attack paths, i.e. sequences of vulnerabilities that the adversary
can exploit to cause harm. We analyse the attack paths found
to quantitatively compute the probability of success for safety
critical attacks and measure the impact of security controls.
In contrast to other approaches that combine threat modelling
with safety analysis, Cassandra offers an integrated set of
tools that enable the automated derivation of safety critical
sequences of threats and their respective attack paths. This
provides an important step towards making security analyses
less subjective, more reproducible and thus more suitable for
applications in safety-critical aircraft contexts.
In particular, this work brings the following contributions:

• We perform a semi-automated integrated safety and secu-
rity analysis of the flight management system and identify
attack paths leading to the execution of safety critical
attacks.

• We model threats against a representative, realistic flight
management system.

• We leverage exact Bayesian inference to analyse found
paths and evaluate different types of security controls.

The paper is structured as follows. We outline related works
in Section II and introduce our aircraft model in Section
III. Section IV describes our proposed methodology and the
preliminary application of STPA. In Section V we show the
application of Cassandra to automatically identify and enu-
merate the threat scenarios, while in Section VI we leverage
the integration with the aircraft architecture to uncover safety
critical attack paths. In Section VII we discuss the obtained
result. Finally, Section VIII presents the conclusions.

II. RELATED WORKS

STPA-Sec [5], [6] extends STPA to consider security threats
amongst the causes of unsafe application of control actions.
STPA-SafeSec [7] extends STPA-Sec and considers a number
of generic threats affecting the architecture of the system.
Khan et al. analyse the impact of security threats in conjunc-
tion with STAMP in [8]. These approaches require a significant
amount of expert knowledge and are error prone as they
are traditionally performed manually. In addition, they only
provide a set of high level scenarios and recommendations
as output. In contrast, our work introduces automation -
which allows a systematic and complete (with respect to the
threats and the model specified) exploration of all the possible
cases. Moreover, through the analysis of attack graphs we
can analyse the impact of individual vulnerabilities on the
high-level safety properties. Works presented in [9] and [10]
propose integrated safety and security analysis using STPA in
conjunction with simulations and attack graphs, respectively.
Studies [11], [12], and [13] combine STPA with model check-
ing. However, they exclusively focus on safety and testing, and
do not consider adversarial threats. Verdict [14] is an AADL
annex that includes Model Based Architecture Analysis and
Synthesis (MBAAS) and Cyber Resiliency Verification (CRV).
MBAAS uses propagation rules manually specified for each

component to infer the propagation of the effects of threats,
while CRV verifies the reachability of threat scenarios for a
limited number of hard-coded threats. In contrast, we rely on
the application of systematic threat modelling to systemat-
ically synthesise a model of the adversary. SAHARA [15]
combines STRIDE threat modelling with the HARA safety
methodology to integrate the analysis of safety and security,
whilst, more generally [16] and [17] present an overview of
other formalisms used to study safety and security. Finally, The
use of attack trees for goal oriented analysis [18] and attack
graphs for representation of possible attacks has also been
reported in the literature [19]. The Boolean Driven Markov
Processes (BDMP) approach proposed in [20], allows to model
the impact of vulnerabilities on safety in the control system of
a pipeline, while [21] presents an interesting argument for the
need for standards for security and safety co-analysis. Barrère
et al. [22] use an approach based AND/OR graphs to identify
mission critical components in CPS.

III. FLIGHT MANAGEMENT SYSTEM

The Flight Management System (FMS) is part of the auto
flight system in conjunction with flight guidance and flight
envelope management. The FMS is responsible for managing
the navigation, datalink, lateral and vertical functions of an
aircraft. It carries out safety critical functions such as following
route and fuel management. It exchanges information with
other part of aircraft avionics such as Navigation Systems
(NS), Flight Control Systems (FCS), as well as other sensors
and actuators to carry out its functions. For simplicity, in this
paper, we primarily focus on the safety of the operations of the
follow route function, but our approach can be easily applied to
the safety of other functions. In Figure 1, we show the network
topology considered in this paper. It is divided in three distinct
domains, each of them with its own characteristics and security
levels. The aircraft control domain (ACD), depicted in blue, is
used by avionics components such as FMS, NS, sensors, etc.
to exchange information. This network is safety critical and
contains redundant components as well as redundant buses.
For simplicity, this redundancy is not shown explicitly in
Figure 1 [23]. The airline service domain (ASD) is depicted on
a green background, it contains the management, non safety
critical, information systems used to communicate with airline
services through wireless networks. The ASD also contains the
Data Loader System (DLS), used by the pilots to upload flight
plans from the Electronic Flight Bag (EFB). We assume that
the latter is a portable device where the flight plans are stored.
Finally, components for passenger infotainment are located in
the passenger information and entertainment services domain
(PIES).
In this paper, we analyse how the risk of safety critical
attacks changes, given the following three different levels
of security controls on the Electronic Flight Bags (EFB)
enforced by the operator: (Scenario 1) EFB is provided
by the airline and has access to the internet (e.g., available
under bring-your-own-device policy). (Scenario 2) EFB is
provided by the airline and cannot access the internet, but is
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Fig. 1: Aircraft Computer Network

enabled with network access towards airline owned enterprise
network. (Scenario 3) EFB does not have access to the
internet. We assume that the EFB device is vulnerable to
CVE-2022-22620 (Remote Code Execution (RCE)) and
CVE-2022-22675 (Local Privilege Escalation). Similarly,
in our scenario, the map server hosts a software component
vulnerable to CVE-2017-0144 (RCE). We use the CVSS
score of each vulnerability to measure their likelihood of
being exploited, in line with much of the related work in this
area [24]. Finally, we assume the presence of the following
vulnerabilities CVE-2023-x (RCE), CVE-2023-y (RCE),
and CVE-2023-z(RCE) which affect the EFB, the DLS, and
the aircraft map storage, respectively. Since CVE-2023-x,
CVE-2023-y, and CVE-2023-x affect devices that are not
widely available to the public which, among other things, run
proprietary software, we assume that each of them, although
severe, is highly unlikely to be exploited.

IV. PROPOSED APPROACH AND PRELIMINARIES

Cassandra is organised in three stages, shown in Figure 2.
The first stage uses the safety model of the system to produce

Threat Scenarios
Identification 

Attack Paths
Construction Risk Analysis 

1 2 3

Fig. 2: Overview of Cassandra

the Threat Scenarios Tree, an attack tree (AT) that explains
how high-level threats can lead to catastrophic consequences
( 1 ). In this stage, we leverage STAMP to model the safety of
the system and STPA and STPA-Sec to discover the dynamics
leading to accidents [6], [25]. STPA and STPA-Sec are well
accepted methods for safety analysis and are applied across
many different sectors [26]. Furthermore, we use STRIDE
[27] as the threat modelling approach within STPA-Sec. The
derivation of the interleaving sets of malicious actions and
system behaviour is achieved through model checking. In
doing so, we are able to also consider critical aspects relative to
the time and context in which threats occur (e.g., flight phase,

autopilot being enabled). In the second stage, we leverage
the integration with the system architecture to identify safety
critical attack paths, sequences of vulnerability exploitations
that the adversary can carry out to execute safety critical
threats. This operation is critical in identifying the privileges
that the attacker needs to obtain to execute safety critical
threat scenarios and cause harm ( 2 ). Finally, we employ exact
Bayesian inference on the attack graph to quantitatively com-
pute the probability of success for the attack paths identified.
We evaluate the effectiveness of security measures in reducing
the probability of success of safety critical attacks ( 3 ).
The first stage of Cassandra is grounded in STPA and uses,
as input, part of the results obtained from the execution of the
first three steps of STPA. STPA-Sec stems from STPA and uses
the same structure as STPA, which develops in four successive
steps [2]: definition of scope of the analysis, derivation of the
control structure, identification of Unsafe Control Actions, and
identification of threat scenarios. Like STPA, STPA-Sec is
performed manually and the application is driven by expert
knowledge. In the next paragraphs we show the application of
the first three steps of off-the-shelf (OTS) STPA/STPA-Sec to
our representative flight management system.

A. Definition of the scope of the analysis

The first step of STPA/STPA-Sec consists in defining the scope
of the analysis. At this stage, we identify Losses, Accidents
and Hazards, as defined in [25], that are relevant to the FMS.
In particular, we consider the following subset of losses from
[28]the Acceptable Means of Compliance (AMC) for Large
Aeroplanes1 [28]; Multiple Fatalities (L1), Hull Loss (L2), and
Physical discomfort or a significant increase in workload of
Flight Crew (L3). According to [28], L1 and L2 are classified
as Catastrophic (allowable probability < 10−9) while L3 is
classified as Major (allowable probability < 10−5). For this
paper, we consider the following reduced subset of events
leading to L1, L2 and L3: (A1) Collision (from Loss of
Separation), (A2), Controlled Flight into Terrain (CFiT), (A3)
Unreliable Avionics Behaviour. We have identified in Table I

TABLE I: Table of Hazards for Flight Management System
# Hazard Accidents
H1 Aircraft violates minimum separation standards in flight A1, A2

H2 Aircraft does not maintain safe distance from terrain and other obstacles A2

H3 Unable to follow route A3

the subset of hazards of concern for the follow route function-
ality of the FMS. If the FMS receives an unreliable position
from the Navigation System (NS), it will compute commands
that can lead to a loss of separation, and, eventually, a collision,
if the aircraft is on autopilot (H1). Conversely, commands
issued by FMS based on an unreliable position or map data can
lead to CFiT (H2) when the aircraft is descending on autopilot.
Finally, unreliable feedback from avionics or unreliable data
on the databases, can lead to errors in the computation of the
flight path and an increase of workload of Flight Crew that
are forced to compute corrections by alternate means (H3).

1AMC 25.1309 – System Design and Analysis



B. Derivation of control structure

The second step of STPA/STPA-Sec is the derivation of the
safe control structure (SCS). This is part of the STAMP model
and captures the dynamics of the interactions between system
components [25]. The SCS is a tuple (C,D,K) where C
denotes the set of components (controllers, sensors, actuators
and physical processes), D the set of control actions and
feedback, and K a set of functional channels [9]. Within
each controller, the variables of the process model retain the
representation of the physical process and are used by the
control algorithm. The SCS for our use case is shown in
Figure 3. For simplicity, only a subset of components, control
actions and feedback are analysed using Cassandra in the
next sections. These have been highlighted in Figure 3 and
are summarised in Table II.

TABLE II: Control Actions and Feedback in Figure 3.
CA/FB Description ( Source Component) CA/FB Description (Source Component)
CA 1.1 Change Altitude (Climb/Descend) (Pilot) CA 1.2 Change Yaw (Pilot)
CA 1.3 Change Pitch (Pilot) CA 1.4 Change Roll (Pilot)
CA 1.5 Change Thrust (Decrease) (Pilot) CA 2.1 Change Altitude (Climb/Descend) (FMS)
CA 2.2 Change Yaw (FMS) CA 2.3 Change Pitch (FMS)
CA 2.4 Change Roll (FMS) CA 2.5 Change Thrust (FMS)
CA 3.1 Change Altitude (Climb/Descend) (FCS) CA 3.2 Change Yaw (FCS)
CA 3.3 Change Pitch (FCS) CA 3.4 Change Roll (FCS)
CA 3.5 Change Thrust (FCS) CA 6.1 Set Route (Pilot)
CA 6.2 Change Route (Pilot) CA 6.3 Start Follow (Pilot)
CA 6.4 Stop Follow (Pilot) CA 8 Toggle Alarm (Pilot)
CA 7.1 Set Route (MCDU) CA 7.2 Change Route (MCDU)
CA 7.3 Start Follow (MCDU) CA 7.4 Stop Follow (MCDU)
CA 5 Upload Data (Ground Crew) CA 4 Upload Flight Plan (Pilot)
CA 15 Radio Signal (Radio Source) CA 16 GNSS Position (GNSS Module)
CA 17 Radio Position (Radio Module) CA 14 GNSS Signal (GNSS Source)
CA 9 Position (Navigation System)
F1 Flight Data (MCDU) F2 Alarm (FWS)
F3 Airspeed (Airspeed Display) F4 Altitude (Altitude Display)
F5 Fuel (Fuel Display) F6 Heading (Heading Display)
F7 Roll, Pitch, Yaw (Gyro Display) F8 VNav (Visual Navigation)
F9 Position (Navigation Display) F10 Flight Data (FMS)
F11 Alarm (FMS) F12 Uploaded Data (DLS)
F13 Stored Maps (Map Storage) F14 Heading (Dir Sensor FMS)
F15 Altitude (Altitude Sensor) F16 Airspeed (Airspeed Sensor)
F17 Position (Navigation System) F18 Roll, Pitch, Yaw (RPY Subsystem)
F19 Airspeed (Airspeed Sensor) F20 Altitude (Altitude Sensor)
F21 Fuel Level (Fuel Sensor) F22 Heading (Dir Sensor Pilot)
F23 Roll, Pitch, Yaw (RPY Subsystem) F24 Position (Navigation System)
F25 IMU-1 Heading (Raw) F26 Airspeed (Raw)
F27 DME Input (Raw) F28 Fuel Level (Raw)
F29 IMU-2 Heading (Raw) F30 Roll, Pitch, Yaw (Raw)
F31 Visual Navigation Input (Raw) F32 Acceleration Forces (Raw)
F33 Position (IRS) F34 CA 14
F35 CA 15 F36 CA 16
F37 CA 17 F38 Fuel Level (Fuel Sensor)

In this paper, we focus on the safe operation of the FMS
which issues control actions Change Altitude (CA2.1), Change
Yaw (CA2.2), Change Pitch (CA2.3), Change Roll (CA2.4),
and Change Thrust (CA2.5). We use CA2 to refer to the entire
output of the FMS, hence control actions CA2.1 to CA2.5.
These actions are computed, on the basis of the current state of
the FMS, from the input received from the Navigation System
(NS) and other sensors such as airspeed, fuel, heading, altitude,
etc. The NS computes CA9 on the basis of the data received
from the Inertial Reference System (INSS) (F32), the Global
Navigation Satellite System (GNSS) (F36), and the radio (F37)
using the algorithm outlined in Section V.

C. Identification of Unsafe Control Actions

The third step of STPA/STPA-Sec is the identification of
Unsafe Control Actions (UCA), i.e., control actions that cause
hazards if applied in a specific context [29]. For example,
the climb command issued by the FMS is unsafe when its
application places the aircraft in a unsafe situation, e.g., loss of
separation, steep climb, etc. STPA distinguish between four

types of unsafe applications of control actions: a control action
is provided when not required, a control action is not provided
when required, a control action is provided too early (or too
late), and a control action is provided for too long or too
short [25]. The latter only applies to control actions defined
in the continuous domain. For simplicity, we report here only
the following unsafe applications related to the control action
change altitude, output of the FMS (CA2.1):

UCA1 : CA2.1 (Change altitude) is applied (climb) when not
required while autopilot is active ← H1, H3.
UCA2 : CA2.1 (Change altitude) is applied (descend) when
not required while autopilot is active ← H2, H3

UCA3 : CA2.1 (Change altitude) is applied (climb or descend)
when not required while autopilot is not active H3

UCA4 : CA2.1 (Change altitude) is not applied (climb) when
required while autopilot is active ← H2, H3.
UCA5 : CA2.1 (Change altitude) is not applied (descend) when
required while autopilot is active ← H1, H3.
UCA6 : CA2.1 (Change altitude) is not applied (climb or
descend) when required while autopilot is not active ← H3.
UCA7 : CA2.1 (Change altitude) is applied (climb or descend)
too early or too late while autopilot is active ← H1, H2, H3.
UCA8 : CA2.1 (Change altitude) is applied (climb or de-
scend) for too long or too short while autopilot is active
← H1, H2, H3.

D. Identification of Threat Scenarios (STPA-Sec)

In the last step of STPA/STPA-Sec, we search for causes
behind the application of unsafe control actions in the whole
control structure. In particular, STPA-Sec looks into threats
as a possible cause, whereas traditional STPA focuses on
faults. The identification of causal scenarios is traditionally
performed manually, mainly relying on expert knowledge.
This process is complex, time consuming and error prone as
it requires the analyst to intersect the specific behaviour of
individual system components with a high-level system view
on how control actions and feedback propagate. In addition to
this, STPA-Sec does not provide clear tools to define the scope
of the security analysis (e.g., trust boundaries) nor provides
guidelines on the nature of threats to consider in this fourth
step. In the first step of Cassandra we employ STRIDE [30]
to identify threats that are applicable to individual elements of
the control structure. Thus, we implement an automatic strat-
egy based on model-checking which allows to systematically
enumerate threat scenarios.

V. ENUMERATION OF THREAT SCENARIOS

Although highly effective in highlighting control depen-
dencies within the cyber physical system (CPS), STPA alone
cannot perform the automatic analysis of the cascading effects
leading to the application of unsafe control actions. In fact,
STAMP does not formalise the behaviour of system com-
ponents and, without it, we cannot infer how alterations in
components’ input reflect on their output. In this paper, we
encode input/output relationships of system components in the
safe behavioural model (SBM) of the CPS. A well-defined
correspondence between the STAMP model of the CPS and the
SBM enables us to express the safety requirements (previously
identified during the application of the third step of STPA) in



Flight Management System

Process Model

Control Algorithm

Pilot(s)

Process Model

Visibility 
Flight State Speed

Altitude

Heading

Altitude  
Sensor

Airspeed 
Sensor

Directional
Sensor (Analog)

Flight Control System

Aircraft

Visual
Navigation

Fuel
Display

Altitude 
Display

Airspeed 
Display

Directional
Sensor (Digital)

Navigation System

Process Model

Radio Status Active
Non Active

Control Algorithm
GNSS Status Active

Non Active

INS Status Active
Non Active

Inertial Reference
System (INSS)

Navigation
Display

Flight Warning System
(GPWS)

Maps Storage

DLS

Ground Crew
Process Model

Aircraft Data 
Routes 

CA 3.1
CA 3.2
CA 3.3
CA 3.4
CA 3.5

CA 1.1
CA 1.2
CA 1.3
CA 1.4
CA 1.5

CA 2.1
CA 2.2
CA 2.3
CA 2.4
CA 2.5

CA 6.1 
CA 6.2 
CA 6.3 
CA 6.4CA 8

CA 5
F1

F2

F10

F5 F4 F3

F8

F9

F14F15F16CA 9

F19F20F21F24

F32

F12

F13

F25F26

F27

F29F31F33

Process Model

Terrestrial Map 
Performance Map 

Process Model
Control

AlgorithmAutopilot Enabled
Not Enabled

Control 
Algorithm 

Fuel Sensor

Heading
Display

Gyro
Display

Roll, Pitch, Yaw
Subsystem

F6F7

F22

F18

F23

F28F30

F38

CA 7.1 
CA 7.2 
CA 7.3 
CA 7.4

Entertainment
SystemF39

Control Strategy

Flight State

Speed

Altitude
Heading

F15CA 9

MCDU

F11

Process
Model Control

AlgorithmOP Mode

GNSS Module

GNSS Source 

F34

F36

Radio Module 
(VOR/DME) 

Radio Source 
(VOR/DME) 

F37

F35

CA 4

Fig. 3: Safe Control Structure of Avionics - Highlighted elements are analysed in the next Section using Cassandra.

computational tree logic (CTL). Our implementation of the
SBM fundamentally differs from those proposed in literature
as it is designed to operate in adversarial conditions. In this
sense, it allows the integration with a behavioural representa-
tion of an adversary who can access and modify information
in the CPS. To this extent, we model integrity and availability
threats against the components and information flow of the
safe control structure and build a synthetic representation
of the adversary. We call instrumented model of the cyber
physical system the parallel composition of the SBM with the
produced attacker model [31].
Through formal verification of the reachability of CTL prop-
erties against the instrumented model of the CPS, we can
systematically identify safety critical threat scenarios, i.e.,
sequences of applications of threats that the adversary can
use to cause harm. Finally, we employ a custom algorithm to
automatically repeat the formal verification of the properties
until no new threat scenario is found. In doing so, we automate
the enumeration of a complete set of threat scenarios.

A. Safe Behavioural Model

The safe behavioural model (SBM) is a labelled transition
system (LTS) which we use to model the propagation of
cascading effects across the safe control structure. Our ap-
proach is largely based on the propagation model proposed
by [14]. For each component in the safe control structure, the
safe behavioural model encodes how alterations in its input
reflect on the output. As the SBM only captures functional
relationships, it is agnostic to specific implementations. In
addition, the absence of complex description of behaviours
allows to swiftly verify the reachability of unsafe control
actions. On the other hand, due to the lack of behavioural
details, this approach requires the analysts to manually specify
input/output relationships for each component and cannot

capture the evolution of the cyber physical system state over
time. We use a network of timed automata (NTA) [32] to
represent the behaviour of the avionics in the safe control
structure (Figure 3). For simplicity, we include only a subset of
components and information flows (those shown with a darker
background in Figure 3). The behaviour of each component,
control action and feedback is described used a distinct Timed
Automaton (TA) [33]. In particular, the NTA representing
our use case includes 17 timed automata, including one for
each of the components altitude sensor, inertial reference
system (INSS), flight management system (FMS), map storage,
multi-function control and display unit (MCDU), flight control
system (FCS), and navigation system. We model the changes of
states in the information flows with the following TAs MCDU
input, MCDU output, FMS pitch output2, FMS Steering Out-
put3, GNSS position, radio position, inertial position, position
(Navigation System Output), map storage data, and altitude.
Timed automata in the NTA are synchronised with each
other over synchronisation channels. The states of the timed
automata represent different failure modes for each component
or information flow (e.g., loss of availability/reliability of a
component or information flow, alternate mode of functioning
of a component, etc.). Transitions across locations express
dependencies between the failure modes of elements in the
SCS, e.g., how a loss of reliability/availability on the input of
a controller affects the state of the controller, and/or how, an
eventual change of state of the latter affects its output. For
each component and information flow we consider two basic
failure modes: unreliable and unavailable.

• If a component becomes unreliable (unavailable), we
assume that all of its output become unreliable (unavail-
able), unless otherwise specified.

2For simplicity, this output aggregates changes of pitch, yaw and roll
3For simplicity, this output aggregates changes of thrust and altitude



• If a part of and information flow becomes unreliable
(unavailable), we assume that all the components for
which the information flow is an input become unreliable
(unavailable), unless otherwise specified.

For complex components, such as the controller, we specify a
broader set of failure modes where the output is still reliable
(e.g., with lower precision) when part of the input has become
unreliable (unavailable); an example of this behaviour is given
in the description of the navigation system below. Accurately
designing failure modes (locations) and the transition between
failure modes is crucial to ensure that the consequences of
(adversarial) events correctly propagate through the SCS. We
assume that complex failure modes (functional input/output
relationships) are provided by the design team. In Figure 4 we
show the timed automaton that represents the behaviour of a
simplified flight control system (FCS). For simplicity, the FCS

Fig. 4: Flight Control System (TA)

accepts two inputs from the flight management system. FMS
Steering, aggregates requests of changes of thrust, change of
altitude and change of heading, while FMS Pitch aggregates
pitch, yaw and roll. The FCS starts in a safe location where
both its inputs are available and reliable, and so is its output. If
one of the input becomes unavailable or unreliable, the output
becomes unavailable or unreliable respectively - when the
autopilot is engaged. In Figure 5 we show the timed automaton

Fig. 5: Position Signal (TA)

that encodes the states of the position signal (information flow)
which is an output of the NS and an input of the FMS.
The position signal starts in a Safe location and becomes
unreliable (or unavailable) as a result of an attack: 1) against
the navigation system (NS) (threat to source) or 2) against
the position itself (threat to information flow data). In Figure
6, we show the TA that encodes the behavioural model of
the navigation system (NS) - a behaviour more complex than
that of the FCS shown earlier. The NS uses a weighted
voting algorithm of its three inputs to estimate the current
position of the aircraft (output). The first input is provided
by the GNSS service, which is considered the least reliable
as vulnerable to spoofing attacks. The second input comes
from the radio receiver. This is considered more precise and
reliable than GNSS although its availability is not guaranteed
for the entirety of the route. Although more difficult to attack
than GNSS, the radio signal comes from an external source
and cannot be considered secure. Finally, the third input comes

Fig. 6: Navigation System (TA)

from the inertial reference system (INSS) and is considered the
most secure as it does not rely on external communications,
however its precision is low and degrades over time. The NS
starts from a Safe location where we assume that the inputs
are all available and reliable and so is its output. 1) When
the inputs are all available, but provide different values, the
NS trusts the INSS above all. 2) A degraded mode allows the
NS to trust GNSS and Radio over the INSS when GNSS and
Radio agree. 3) Additional degraded modes allow the system
to operate when one or two inputs are not available. In this
case, the order of trust is INSS, radio, and GNSS. 4) if all three
inputs are unavailable, then the NS becomes unavailable. 5) the
output of the NS becomes unreliable when multiple adverse
events occur (e.g., radio and INSS are unavailable and GNSS
provides unreliable values, or GNSS and radio start providing
unreliable values as a result of a maliciously induced fault).

B. Threat Model

To formally verify the reachability of unsafe states in adver-
sarial conditions, we build a synthetic model of the adverary’s
possible behaviour. We first define the trust boundaries and
systematically model integrity and availability threats against
the components, control actions and feedback in the SCS. For
simplicity, we do not consider threats against confidentiality
which (generally) do not impact safety. We assume that an
attacker can conduct tampering, spoofing, and denial of service
(DoS) attacks against the components, control actions and
feedback of SCS (Figure 3) which are also included in the
SBM. Overall, we consider a total of 34 threats (17 threats
to availability and 17 to integrity).We use the threat model to
build a synthetic attacker. This is a timed automaton which
starts from a Idle/Ready location from where any threat can
be launched in a non deterministic fashion. When a threat is
launched, the target enters a failure mode the effects of which
propagate through the safe control structure.

C. Formal verification

The safe behavioural model captures how conditions such
as alternate modes of functioning, but also loss of availability
or reliability affect control actions and feedback, and how
their effects propagate through the control structure. In this
paragraph, we build a correspondence between locations of
TA representing control actions and the types of unsafe control



actions defined in STPA. In building such correspondence we
assume that a loss of availability of a control action can lead
to: 1) an unsafe control action of the type non provided.
2) an unsafe control action of the type provided too late,
if the loss of availability is temporary. 3) an unsafe control
action of the type provided for too short, if the loss of
availability prematurely ends the application of the control
action. Similarly, we assume that a loss of reliability of a
control action leads to: 1) an unsafe control action of the type
non provided. If the control action is not applied due to an
unreliable information flow. 2) an unsafe control action of the
type provided. If the control action is provided when it should
not due to an unreliable information flow. 3) an unsafe control
action of the type provided too early or too late, if the loss of
reliability affects the timing of the control action. 4) an unsafe
control action of the type provided for too short or provided
for too long, if the loss of reliability respectively ends the
application of the control action before time, or when it is too
late.
Safety specifications are expressed in TCTL as reachability
statements of the form: E <> ϕUCA, i.e., there is at least
one computation where ϕUCA is true [34]. For example, we
define the following two statements to verify UCA1, UCA2,
UCA3, UCA4, UCA5, UCA6, UCA7, and UCA8:

1) ϕ1 := E <> fmssteering.Unreliable
Explanation: Is there a situation where FMS Steering Output
becomes unreliable following an attack (UCA1 − UCA8)?

2) ϕ2 := E <> fmssteering.Unavailable
Explanation: Is there a situation where FMS Steering Output
becomes unreliable following an attack (UCA4 − UCA8)?

The formal verification of ϕ1 and ϕ2 on the instrumented
model allows us to explore all the possible combinations
of threats which alone, or through cascading effects lead to
safety violations. If the reachability statement is satisfied, the
model checker also returns a witness trace as proof of the
reachability. The trace includes the ordered sequence of threats
leading to the UCA as well as the state of the components
when the threats are effective (window of opportunity). In
Cassandra, we include a custom algorithm to enumerate all
threat scenarios that verify the reachability of the same UCA.
This enables us to uncover a set of scenarios that is complete
with respect to the threats, component behaviours and bounds
imposed on the model checking. We show the outcome of the

TABLE III: Threat scenarios found.
Hazard Spec T CT
H1 ϕ1 12 30.92s
H1 ϕ2 9 31.387s

verification of ϕ1 and ϕ2 leading to the hazard H1 in Table III.
For each ϕ we also report the total number scenarios found
(T), and the cumulative time (CT) taken to verify each ϕ.
Cassandra finds 12 threat scenarios potentially leading to the
hazards H1 through ϕ1, while 9 additional scenarios leading to
H1 are found through the verification of ϕ2. Figure 7 shows an
example of the threat scenario tree derived for H1 through the
verification of ϕ1. Interestingly, while the last four scenarios
are straightforward as the threats directly affect the FMS or
its input, scenarios 1− 5, show all the combination of attacks
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Fig. 7: Threat scenarios tree (UCA1)

on the INSS, GNSS and Radio subsystems that can affect the
decisions taken by the FMS while the aircraft is on autopilot.

VI. ATTACK GRAPH ANALYSIS

In the second step of Cassandra, we employ MulVal [35]
to derive the safety critical attack paths i.e. the sequences
of privileges an attacker needs to obtain to execute a threat
scenario and thus cause a hazard. The attack graph of the
CPS shows the paths leading to a target threat scenario.
For brevity, we focus on two types of privileges within the
architecture: network access and code execution. This step
of Cassandra relies on two assumptions. First, we assume
that the architecture of the aircraft is known. It describes the
network topology and also contains information on the hosts,
e.g., hardware model, software version, etc.. We also assume
that a security assessment has been carried out to identify
the vulnerabilities and weaknesses that affect the different
components, and the privileges such vulnerabilities would
grant to an adversary following a successful exploitation. We
leverage the usual traceability requirements - normally adopted
within the development life-cycle of safety critical systems -
to link threats against elements of the safe control structure
to components in architecture, e.g., which privileges enable
which threats. In Table IV, we show the subset of threats
we have considered in our proposed use case. In essence, an
adversary that acquires network access to the most critical
domain on the aircraft (aircraft.control.domain) poses a threat
to the integrity and the availability of most - or all - safety
relevant control actions and feedback previously defined in
the safe control structure. Among these, for simplicity, we



TABLE IV: Threats and privileges in the use case. Spoofing and
Tampering threats affect the integrity whereas DoS affects
availability. NA: Network access. Exec: Code execution.

Privilege Threat
NA(GNSSNet) {(integrity,GNSSPosition)}

NA(control.domain)
NA(internet) {(availability,GNSSPosition)}

NA(GNSSNet)
NA(control.domain) {(integrity, INSSPosition)}
NA(control.domain) {(availability, INSSPosition)}
NA(control.domain) {(integrity, RadioPosition)}
NA(control.domain) {(availability, RadioPosition)}
NA(control.domain) {(integrity, Position(NavSysOut))}
NA(control.domain) {(integrity,mapDataOut)}
. Exec(FMS, root)
Exec(DLSr, root)

NA(control.domain) {(integrity, fmsSteeringOut)}
. Exec(FMS, root)
NA(control.domain) {(availability, fmsSteeringOut)}
NA(control.domain) {(integrity,mcduOut)}

only consider GNSS Position, Radio Position, INSS Position,
NavSysOut, mapDataOut, fmsSteeringOut, and mcduOut. Sim-
ilarly, an adversary who gains network visibility of the GNSS
receiver (e.g., via strong satellite signal) poses a threat to the
integrity and/or the availability of the GNSS Position feed-
back. Finally, code executions privileges on the DLSLoader
and FMS are a threat to the integrity of mapDataOut and
fmsSteeringOut.

A. Generation of the attack graph

Using MulVal [35] we generate the attack paths leading to the
execution of the threat scenarios relevant to UCA1 in three
distinct cases: 1) Electronic Flight Bag (EFB) is provided
by the airline and has access to the internet, or is available
under bring-your-own-device (BYOD) policy (T1). 2) EFB is
provided by the airline and cannot access the internet, but is
enabled with network access towards airline owned enterprise
network (T2). 3) EFB does not have access to the internet
(T3). To perform this analysis we run MulVal providing,
as input, three variations of the aircraft architecture, each
encoding a different case. The attack graph generation process
(outlined in [10]) uses the target scenarios as an additional
input; we use threat scenarios TS−1 to TS−12 for this. The
attack graph produced by MulVal is a directed tripartite graph
G = (V, E) linking pre-conditions to attack steps and their
post-conditions. Pre-conditions represent privileges required
to perform the attack step but also security conditions (e.g.,
software running on a host, a network service, a vulnerability,
etc.). Post-conditions represent the privileges obtained. In the
first scenario (EFB with connectivity to the internet), the attack
graph produced has 136 vertices and 155 edges, representing
all the possible known attack paths that enable the execution of
the attack. With the same settings, the attack graph produced
when EFB has limited connectivity (no internet access) is
slightly smaller (126 vertices and 143 edges). Finally, no attack
paths are found when the EFB has no connectivity at all and
at least two among GNSS, INSS and Radio are operating
correctly. This is expected as we are not considering physical
attacks on the EFB. However, if we run Mulval while INSS

and Radio are down (e.g., due to a failure), MulVal correctly
finds that GNSS spoofing is a valid path leading to UCA1.
Due to the imposed limit of pages, we are not able to show the
attack graphs produced by MulVal, however, they are available
on our repository 4.
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Fig. 8: Attack Graph - (Scenario 1).

B. Likelihood of Threat Scenarios

We employ Bayesian Attack Graphs (BAG) [36] to compute
the marginal probabilities of an adversary being successful
in a threat scenario. The graph produced by MulVal is a
tripartite directed graph which also admits cycles. In order
to apply Bayesian inference, we need to transform the graph
produced by MulVal into a Directed Acyclic Graph (DAG)
where the vertices represent privileges and edges represent the
exploitation of a vulnerability (or a weakness). We remove
cycles by enforcing the assumption that the attacker never
releases privileges once it acquires them. Then, we transform
the MulVal graph into a DAG. In essence, privileges in MulVal
are treated as privileges in the DAG, and MulVal derivation
rules are used to re-construct the edges. Figure 8 shows the
attack graph produced for the case T1, with targets TS − 1
and TS − 2, with

(TS − 1): Integrity(GNSS Position) AND Availability(Radio
Position AND Availability(INSS Position).
(TS − 2): Integrity(MapStorageOut)

We use Bayesian inference as described in [24] on the resulting
DAG. Vertices and are modelled using Bernoulli random vari-
ables with the probability of the vertex vi being compromised
by the adversary being P (Vi = 1) = p [24]. BAG edges model
dependencies between vertices. In this case, a dependency

4https://github.com/rissgrouphub/dasc-43-submission



represents a vulnerability that the attacker exploits to acquire
a new privilege. The weight pei of the i − th edge reflects
the likelihood of the vulnerability i being exploited. We have
used the following values for the inference Highly-Unlikely
= 0.1, Unlikely = 0.2, Likely = 0.5, Highly-Likely = 0.8, and
Certain = 1. Table V shows the marginal probabilities of the
attacker successfully executing a threat scenario (TS − 1 or
TS − 2) in the three different cases. Overall, we obtain that,

TABLE V: Marginal Probabilities
Configuration TS Marginal Probability
EFB Internet access TS − 1 3 ∗ 10−4

EFB Internet access TS − 2 26 ∗ 10−3

EFB Airline restricted access TS − 1 < 10−5

EFB Airline restricted access TS − 2 2 ∗ 10−4

EFB disconnected TS − 1 ≤ 10−1

EFB disconnected TS − 2 NA

in the first configuration the marginal probability of TS−1 is
3 ∗ 10−4 while that of TS − 2 is 26 ∗ 10−3. This is coherent
with TS − 1 requiring more conditions to be fulfilled than
TS − 2. Marginal probabilities of the two threat scenarios
are, respectively, < 10−5 and 2 ∗ 10−4 under the second
configuration, when the EFB has limited connectivity. Finally,
if connectivity on the EFB is disabled, TS − 2 cannot be
achieved while TS−1 is achievable with marginal probability
of 0.1 if and only if the NS is working in alternate mode GNSS
only (worst case). However, without access to the aircraft
through the EFB, the adversary would not be able to directly
cause a loss of availability of both radio and INSS systems.
Hence, the adversary needs the two systems to have failed
independently already for the attack to be successful.

VII. DISCUSSION

Using Cassandra we have evaluated the risk associated with
three different policies regarding management and configura-
tion of EFB. The application of the first step of Cassandra on
a subset of our aircraft SCS led to the discovery of 23 threat
scenarios, ordered sequences of threats that malicious actors
can actuate to cause a hazard. We leveraged the integration of
the aircraft control structure with its architecture to generate
the attack paths leading to the privileges that the attacker
needs to engage in 12 of the found threat scenarios. We
have identified two main paths of compromise starting from
outside the system perimeter when the EFB is equipped with
internet connectivity. The first path reaches the ACD through
the airline enterprise network which, for simplicity, we have
represented as a flat network with two hosts, a workstation, and
a map server. By reusing credentials [37], [38] the adversary
can access the workstation and then pivot towards the map
server. Network visibility on the EFB enables them to exploit
CVE-2023-x - which we have assumed. A second path
leads the adversary from the outside directly to the EFB
through the exploitation of CVE-2022-620. Assuming that
CVE-2023-x cannot be exploited from the internet (e.g.,
traffic blocked), the attacker can exploit CVE-2022-22675
to acquire root privileges on the EFB. Then, they can exploit
CVE-2023-y and CVE-2023-z ASD and ACD. The edge

on the far left of Figure 8 shows that the GNSS service is
also reachable from outside system perimeter. As expected, the
attack graph generated when the EFB does not have internet
access does not contain the edge CVE-2022-620 Figure 8.
The qualitative analysis of the attack graph shows that the
EFB is a bottleneck in the attack graphs. It also shows that
the feasibility of threat scenarios depends on configuration of
the aircraft architecture; by disconnecting the EFB from the
internet and then from the airline network, we increasingly
limit the number of threat scenarios that can be exploited.
Trading off usability - workload imposed on the crew - against
the security gains requires a quantitative analysis of the attack
graphs produced. We do so by reasoning over the probabilities
using Bayesian inference in the third step of Cassandra. The
analysis of the marginal probabilities of threat scenarios yields
three key results. Firstly, we show that the third configuration
(EFB isolated) is the one that carries the least risk, which
is intuitive. However, it also increases the workload for the
crew, as a limited connectivity also reduces the availability
of automation in uploading data to the EFB. Secondly, low
level security controls (e.g., fixing of vulnerabilities) applied
on airline corporate network and devices are critical to contain
the risk of successful attacks targeting the ACD through the
EFB. In our use case, we show that, through the containment of
vulnerabilities CVE-2022-22675 and CVE-2017-144, we
can reduce the marginal probabilities of TS − 2 below 10−5.
To this extent, it is possible to be compliant with certification
while also providing the Flight Crew with automated pro-
cesses. Thirdly, internet connectivity on devices that interact
with the aircraft network (e.g., EFB tablet) is associated with
a significant risk and is highly discouraged.

VIII. CONCLUSIONS

The increased availability of connectivity leads to desirable
gains in ease of use and productivity. Unfortunately, this
trend also leads to an increased attack surface. In safety
critical systems, such as aviation, identifying and mitigating
adversarial threats to safety is necessary to avoid hazards and
ensure compliance with applicable regulation. Not all threats
impact safety, so it is necessary to identify, characterise and
mitigate those that do. This requires a combined safety and
security analysis with systematic identification of the threats
and their corresponding attack paths. Risk based decisions
require a quantification of the risks and of the probabilities
involved. The complexity of the systems considered, as well as
cost pressures, favour the application of automated and semi-
automated techniques over human effort. Cassandra offers a
methodology combining safety and security analysis. Through
the application of formal methods it enables a systematic
identification of the safety critical attack scenarios, which
are then mapped to attack paths. This enables a qualitative
reasoning for mitigation of the attack paths and probabilistic
(Bayesian) reasoning for risk quantification and assurance.
Together, they enable to evaluate different system design alter-
natives and make informed choices. We show the application
of Cassandra on a contained and perhaps intuitive case study.



However, it can be applied more broadly across the entirety
of the system design. Several simplifications have been made
to the models analysed to ensure that the case study could
be presented within the imposed page limit. Important lessons
learnt in the development of Cassandra concern the integration
of the different methodologies, tools and design models across
safety, security, systems engineering and verification. These
require rigorous mappings to be established across slightly
different formalism and tools overlapping in scope but inde-
pendently developed. This is a difficult task and one that could
be significantly facilitated in the future by the co-design of
security and safety methodologies and improved availability
of system design models. Like all systems, Cassandra has a
number of limitations. These mainly stem from the capability
of existing tools to cope with existing system complexities e.g.,
model checking and attack graph generation. Furthermore,
Cassandra is not yet able to search design spaces, synthesise
mitigation or remediation procedures. Our future work, will
be focused on novel techniques to remove these limitations
and improve Cassandra’s capabilities to deal with dynamical
systems and run-time security information.
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